Synthesis of (\pm) -Calicheamicinone by Two Related Methods

Scheme 1^a

D. L. J. Clive,* Yunxin Bo, Yong Tao, Sylvain Daigneault, Yong-Jin Wu, and Gérard Meignan

> Chemistry Department, University of Alberta Edmonton, Alberta, Canada T6G 2G2

> > Received January 22, 1996

We report the synthesis of (\pm) -calicheamicinone (1),¹ the aglycon (in racemic form) of the antitumor agent² calicheamicin γ_1^{I} . Ester exchange³ of β -keto ester 2⁴ with ClCH₂CH₂OH [Ti-

 $(OPr-i)_4$, 63%], followed by treatment with K₂CO₃, gave⁵ ketene acetal **3** (80–87%) (Scheme 1). Deprotonation [(Ph₂MeSi)₂NLi⁶] to the Z-enolate⁷ and trapping with Me₃SiCl afforded triene 4, which underwent Diels-Alder cycloaddition with methyl (E)-3-nitropropenoate⁸ ($4 \rightarrow 5^9$; 56% from 3). Reduction of 5 with NaBH₄ gave a 2:1 mixture of C(5) epimeric alcohols [only the major one (6) is shown]. These were separated after silvlation [t-BuMe₂SiOTf, 2,6-lutidine, 65% (from 5) of 5α-isomer 7, and 33% (from 5) of corresponding 5β -isomer⁹]. Both isomers were independently converted into 14 by identical routes; only the procedure for the major isomer is shown, but yields for the 5β series are also given in the scheme. Reduction (DIBAL-H; 99%) of ester 7 generated primary alcohol 8, and the carboncarbon double bond of 8 was then cleaved (OsO₄, NaIO₄; 99%). The resulting equilibrium mixture of lactols (9) afforded (96%) a single pivaloate (10) in the presence of *t*-BuCOCl and pyridine. Next, the nitro group was reduced¹⁰ (NiCl₂, NaBH₄, ultrasound, 95%) and protected (allyloxycarbonyl chloride, pyridine; 94%) $(10 \rightarrow 11 \rightarrow 12)$. Desilylation $(12 \rightarrow 13; \text{TBAF}; 97\%)$ and PCC oxidation $(13 \rightarrow 14; 91\%)$ now set the stage for introduction of the first acetylene unit $(14 \rightarrow 15^9)$. This was

(1) (a) Haseltine, J. N.; Paz Cabal, M.; Mantlo, N. B.; Iwasawa, N.; Yamashita, D. S.; Coleman, R. S.; Danishefsky, S. J.; Schulte, G. K. J. *Am. Chem. Soc.* **1991**, *113*, 3850. (b) Smith, A. L.; Pitsinos, E. N.; Hwang, C.-K.; Mizuno, Y.; Saimoto, H.; Scarlato, G. R.; Suzuki, T.; Nicolaou, K. C. J. Am. Chem. Soc. 1993, 115, 7612. (c) Aiyer, J.; Hitchcock, S. A.; Denhart, D. J.; Liu, K. K.-C.; Danishefsky, S. J.; Crothers, D. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 855.

(2) Lee, M. D.; Dunne, T. S.; Chang, C. C.; Siegel, M. M.; Morton, G. O.; Ellestad, G. A.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc. 1992. 114. 985.

(3) Seebach, D.; Hungerbühler, E.; Naef, R.; Schnurrenberger, P.; Weidmann, B.; Züger, M. Synthesis 1982, 138.
(4) Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082.

(5) cf.: (a) Broadhurst, M. D. J. Org. Chem. 1985, 50, 1117. (b) Eid, C. N., Jr.; Konopelski, J. P. Tetrahedron 1991, 47, 975.

(6) Made from the amine (BuLi, THF, 0 °C; 20 min); Zhinkin, D. Y.; Mal'nova, G. N.; Gorislavskya, Zh. V. J. Gen. Chem. USSR **1968**, *38*, 2702.

(7) cf.: Masamune, S.; Ellingboe, J. W.; Choy, W. J. Am. Chem. Soc. 1982, 104, 5526.

(8) Danishefsky, S.; Prisbylla, M. P.; Hiner, S. J. Am. Chem. Soc. 1978, 100, 2918. cf.: Danishefsky, S. Acc. Chem. Res. 1981, 14, 400. Banville, J.; Brassard, P. J. Chem. Soc., Perkin Trans. 1 1976, 1852. Schechter, H.; Conrad, F.; Daulton, A. L.; Kaplan, R. B. J. Am. Chem. Soc. 1952, 74, 3052

(9) Structure confirmed by x-ray analysis.

(10) Osby, J. O.; Ganem, B. Tetrahedron Lett. 1985, 26, 6413.

^{*a*} Z = SiMe₂Bu-*t*; yields in brackets refer to 5 β series. ^{*b*} Yield after equilibration: 71% (see text).

accomplished by reaction with cerium trimethylsilylacetylide¹¹ (1:1.2 Me₃SiC≡CLi, CeCl₃; THF, −78 °C; 91%), the acetylene being introduced anti to the nitrogen. Protection of the hydroxyl group (15 \rightarrow 16; *t*-BuMe₂SiOTf, 2,6-lutidine; 93%), removal of the pivaloyl group ($16 \rightarrow 17$; DIBAL-H; 96%), and Collins oxidation $(17 \rightarrow 18; 97\%)$ then brought the work to a point

© 1996 American Chemical Society

 a Z = SiMe₂Bu-t.

where we needed to introduce double bonds at C(4)-C(7) and C(2)-C(3) and attach an acetylene unit at C(9).

Compound 18 was desaturated at C(4)–C(7) [18 \rightarrow 19; LDA, PhSeBr; dimethyldioxirane; 85%), deprotected at nitrogen [19 \rightarrow 20; Pd(PPh₃)₄, dimedone;¹² 93%], desaturated at C(2)-C(3) $(20 \rightarrow 21; t$ -BuOCl, DBU; 81%), and methoxycarbonylated (21) \rightarrow 22; triphosgene, pyridine; MeOH; 91%). Next, free radical bromination at C(9) $[22 \rightarrow 23;$ NBS, (PhCO)₂O₂, 100 W tungsten lamp], followed by hydrolysis (H₂O, AgNO₃, 23 \rightarrow 24^{13}) and esterification (CH₂N₂), gave aldehyde ester 25 (77%) from 22). This reacted with cerium trimethylsilylacetylide (1:1.3 Me₃SiC≡CLi, CeCl₃, THF, −78 °C), affording **26** (91%). Finally, desilylation (TBAF) yielded 27⁹ (46%). During this step, epimerization occurs at C(9); however, treatment of the easily separated anti-isomer¹⁴ (42% isolated from 26) with Bu₄-NOAc gives quantitatively a 6:4 mixture in favor of 27. Therefore, by equilibrating the anti-diyne once, it is possible to convert 26 into 27 in 71% yield.

The acetylenic hydrogens of 27 were now replaced by iodine $(27 \rightarrow 28; \text{NIS}, \text{AgNO}_3; 89\%]$, and the cyclic enediyne was then generated¹⁵ (Scheme 2, $28 \rightarrow 29$; 72%) by Pd-mediated condensation with (Z)-1,2-bis(trimethylstannyl)ethene¹⁶ [Pd-(PPh₃)₄, 60 °C]. From 29, the last steps were guided by established^{1a,b,17} principles. Reduction with DIBAL (98%), desilylation (TBAF, 94%), and further reduction (76%) with NaBH₄ gave triol **30**. Silvlation of the primary and secondary hydroxyls (Et₃SiOTf, 2,6-lutidine, 95%) and selective hydrolysis (3:6:1 AcOH, THF, H₂O; 94%) then afforded allylic alcohol 31, from which point elaboration of the trisulfide $(31 \rightarrow 32)$ was accomplished^{1a,18} by successive reaction with diisopropyl azodicarboxylate, Ph₃P, and AcSH (94%) and DIBAL-H and N-(methyldithio)phthalimide (88% over two steps). Finally, acid

(14) C = CH units at C(5) and $\hat{C}(9)$ anti.

(15) cf.: Shair, M. D.; Yoon, T.; Danishefsky, S. J. J. Org. Chem. 1994, 59, 3755. Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P. J. Am. Chem. Soc. **1993**, 115, 4419. Barrett, A. G. M.; Boys, M. L.; Boehm, T. L. J. Chem. Soc., Chem. Commun. 1994, 1881. Pattenden, G.; Thom, S. M. Synlett 1993, 215.

(16) Mitchell, T. N.; Amamria, A.; Killing, H.; Rutschow, D.; J.

Organomet. Chem. 1986, 304, 257. (17) Magnus, P.; Lewis, R. T.; Bennett, F. J. Chem. Soc., Chem. Commun.

1989, 916 and references therein. (18) $CH_2OH \rightarrow CH_2SAc \rightarrow CH_2SH \rightarrow CH_2SSSMe$. Scheme 3^a

hydrolysis (TsOH, H₂O, 84%) served to disengage the two remaining protecting groups and so give synthetic (±)-calicheamicinone (1).^{1a,b}

We have also converted racemic 8 (represented in Scheme 3 by the enantiomer 8a) into ketone 33 by procedures^{19,20} of the type used in the first route. Treatment of 33 with cerium trimethylsilylacetylide (1:1.4 Me₃SiC≡CLi, CeCl₃; THF, -78 °C; 91%) serves to introduce the acetylene syn to the nitrogen $(33 \rightarrow 34)$, and further elaboration^{20,21} took the route as far as aldehyde 35. This reacts with cerium trimethylsilylacetylide (1:1.3 Me₃SiC≡CLi, CeCl₃, THF, −78 °C) to give alcohol 36 (71%),²² which is easily convertible^{20,23} into lactone **37** and then, by a procedure^{20,24} similar to that used earlier, into **27**.

The only stereogenic center in 18 and 34 that is preserved after elaboration to (\pm) -calicheamicinone is C(5). Therefore, in a synthesis of material with the natural stereochemistry (as actually depicted in diagram 1), intermediates corresponding to 5 with (2S) absolute configuration would have to be processed as in Scheme 1, while the reactions of Scheme 3 would be used for the (2R)-isomer.

Acknowledgment. We thank NSERC, the Merck Frosst Therapeutic Research Centre, and the Alberta Cancer Board for financial support, Drs. G. V. J. da Silva, N. Selvakumar, and Y.-Z. Hu for assitance, Professor W. A. G. Graham for hexamethylditin, Professor D. N. Harpp for advice, and Dr. R. McDonald for x-ray measurements. Y.T. held an AHFMR Postdoctoral Fellowship, Y.-J.W. a NSERC Postdoctoral Fellowship, S.D. a 1967 NSERC Graduate Fellowship, and G.M. a Postdoctoral Scholarship (Ministère de la Recherche et de la Technologie, France).

Supporting Information Available: Spectral data for most compounds and annotated flow chart for the second route (42 pages). Ordering information is given on any current masthead page.

JA9602004

- (19) OH \rightarrow OCOBu-*t*; CH=CH₂ \rightarrow CHO \rightarrow CH₂OH \rightarrow CH₂OCH₂- $OC_6H_4OMe_p; NO_2 \rightarrow NH_2 \rightarrow NHCO_2allyl; CHOSiMe_2Bu-t \rightarrow CHOH$ C=O. The C(5) epimer of 8a was also converted into 33.
- (20) See supporting information for details of these efficient procedures.
- (21) $OH \rightarrow OSiMe_2Bu$ -t; CH_2OCOBu -t $\rightarrow CH_2OH \rightarrow CHO$. (22) The C(9) epimer (18%) is convertible (PCC; NaBH₄; ca. 90%
- overall) into an 11.6:1 isomer mixture in favor of 36. (23) OH \rightarrow OCOCH₂Cl; CH₂OCH₂OC₆H₄OMe- $p \rightarrow$ CH₂OH \rightarrow CHO;

 $OCOCH_2Cl \rightarrow OH$; Collins oxidation of lactols.

(24) Desaturation at C(4)-C(7), nitrogen deprotection, desaturation at C(2)-C(3), nitrogen methoxycarbonylation, acetylene desilylation.

⁽¹¹⁾ cf.: (a) Imamoto, T.; Sugiura, Y.; Takiyama, N. Tetrahedron Lett. 1984, 25, 4233. (b) Suzuki, M.; Kimura, Y.; Terashima, S. Chem. Lett. 1984, 1543. (c) Jung, P. M. J.; Burger, A.; Biellmann, J.-F. Tetrahedron Lett. 1995. 36, 1031.

⁽¹²⁾ Kunz, H.; Unverzagt, C. Angew. Chem., Int. Edn. Engl. 1984, 23, 436

⁽¹³⁾ The SiMe₃ group is removed during hydrolysis. Compound 24exists as two hydroxyl lactones, epimeric at C(9).