Communications to the Editor

Synthesis of (\pm)-Calicheamicinone by Two Related Methods

D. L. J. Clive,* Yunxin Bo, Yong Tao, Sylvain Daigneault, Yong-Jin Wu, and Gérard Meignan

Chemistry Department, University of Alberta Edmonton, Alberta, Canada T6G 2G2

Received January 22, 1996
We report the synthesis of (\pm)-calicheamicinone (1), ${ }^{1}$ the aglycon (in racemic form) of the antitumor agent ${ }^{2}$ calicheamicin $\gamma_{1}{ }^{\mathrm{I}}$. Ester exchange ${ }^{3}$ of β-keto ester $\mathbf{2}^{4}$ with $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ [Ti-

$\left.(\mathrm{OPr}-i)_{4}, 63 \%\right]$, followed by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$, gave ${ }^{5}$ ketene acetal 3 ($80-87 \%$) (Scheme 1). Deprotonation $\left[\left(\mathrm{Ph}_{2} \mathrm{MeSi}_{2} \mathrm{NLi}^{6}\right]\right.$ to the Z-enolate ${ }^{7}$ and trapping with $\mathrm{Me}_{3} \mathrm{SiCl}$ afforded triene 4, which underwent Diels-Alder cycloaddition with methyl (E) -3-nitropropenoate ${ }^{8}\left(\mathbf{4} \rightarrow \mathbf{5}^{9} ; \mathbf{5 6 \%}\right.$ from 3). Reduction of $\mathbf{5}$ with NaBH_{4} gave a $2: 1$ mixture of $\mathrm{C}(5)$ epimeric alcohols [only the major one (6) is shown]. These were separated after silylation [t-BuMe ${ }_{2} \mathrm{SiOTf}$, 2,6-lutidine, 65% (from 5) of 5α-isomer 7, and 33% (from 5) of corresponding 5β-isomer ${ }^{9}$]. Both isomers were independently converted into $\mathbf{1 4}$ by identical routes; only the procedure for the major isomer is shown, but yields for the 5β series are also given in the scheme. Reduction (DIBAL-H; 99%) of ester 7 generated primary alcohol $\mathbf{8}$, and the carboncarbon double bond of $\mathbf{8}$ was then cleaved $\left(\mathrm{OsO}_{4}, \mathrm{NaIO}_{4} ; 99 \%\right)$. The resulting equilibrium mixture of lactols (9) afforded (96\%) a single pivaloate ($\mathbf{1 0}$) in the presence of $t-\mathrm{BuCOCl}$ and pyridine. Next, the nitro group was reduced ${ }^{10}\left(\mathrm{NiCl}_{2}, \mathrm{NaBH}_{4}\right.$, ultrasound, 95\%) and protected (allyloxycarbonyl chloride, pyridine; 94\%) $(\mathbf{1 0} \rightarrow \mathbf{1 1} \boldsymbol{\rightarrow} \mathbf{1 2}$). Desilylation ($\mathbf{1 2} \boldsymbol{\rightarrow} \mathbf{1 3}$; TBAF; 97%) and PCC oxidation ($\mathbf{1 3} \rightarrow \mathbf{1 4} ; \mathbf{9 1} \%$) now set the stage for introduction of the first acetylene unit ($\mathbf{1 4} \boldsymbol{\rightarrow} \mathbf{1 5}^{9}$). This was

[^0]
Scheme 1^{a}

$21 \mathrm{R}=\mathrm{H}$
$22 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
93\%
$26 \mathrm{R}=\mathrm{SiMe}_{3}$

${ }^{a} \mathrm{Z}=\mathrm{SiMe}_{2} \mathrm{Bu}-t$; yields in brackets refer to 5β series. ${ }^{b}$ Yield after equilibration: 71% (see text).
accomplished by reaction with cerium trimethylsilylacetylide ${ }^{11}$ (1:1.2 $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CLi}, \mathrm{CeCl}_{3} ; \mathrm{THF},-78{ }^{\circ} \mathrm{C} ; 91 \%$), the acetylene being introduced anti to the nitrogen. Protection of the hydroxyl group ($\mathbf{1 5} \boldsymbol{\rightarrow} \mathbf{1 6}$; t-BuMe ${ }_{2}$ SiOTf, 2,6-lutidine; 93\%), removal of the pivaloyl group ($\mathbf{1 6} \rightarrow \mathbf{1 7}$; DIBAL-H; 96\%), and Collins oxidation ($\mathbf{1 7} \boldsymbol{\rightarrow} \mathbf{1 8} ; \mathbf{9 7 \%}$) then brought the work to a point

Scheme $\mathbf{2}^{a}$

${ }^{a} \mathrm{Z}=\mathrm{SiMe}_{2} \mathrm{Bu}-t$.
where we needed to introduce double bonds at $\mathrm{C}(4)-\mathrm{C}(7)$ and $C(2)-C(3)$ and attach an acetylene unit at $C(9)$.

Compound $\mathbf{1 8}$ was desaturated at $\mathrm{C}(4)-\mathrm{C}(7)[\mathbf{1 8} \rightarrow \mathbf{1 9}$; LDA, PhSeBr ; dimethyldioxirane; 85\%), deprotected at nitrogen [19 $\rightarrow \mathbf{2 0} ; \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, dimedone; ${ }^{12} 93 \%$], desaturated at $\mathrm{C}(2)-\mathrm{C}(3)$ $(\mathbf{2 0} \rightarrow \mathbf{2 1} ; t-\mathrm{BuOCl}, \mathrm{DBU} ; 81 \%)$, and methoxycarbonylated (21 $\rightarrow \mathbf{2 2}$; triphosgene, pyridine; $\mathrm{MeOH} ; 91 \%$). Next, free radical bromination at $\mathrm{C}(9)$ [$\mathbf{2 2} \rightarrow \mathbf{2 3}$; NBS, $(\mathrm{PhCO})_{2} \mathrm{O}_{2}, 100 \mathrm{~W}$ tungsten lamp], followed by hydrolysis $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{AgNO}_{3}, 23 \rightarrow\right.$ $\mathbf{2 4}{ }^{13}$) and esterification $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$, gave aldehyde ester $\mathbf{2 5}(77 \%$ from 22). This reacted with cerium trimethylsilylacetylide (1:1.3 $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CLi}, \mathrm{CeCl}_{3}, \mathrm{THF},-78^{\circ} \mathrm{C}$), affording 26 (91%). Finally, desilylation (TBAF) yielded $\mathbf{2 7}^{9}(46 \%)$. During this step, epimerization occurs at $C(9)$; however, treatment of the easily separated anti-isomer ${ }^{14}$ (42% isolated from 26) with $\mathrm{Bu}_{4}{ }^{-}$ NOAc gives quantitatively a 6:4 mixture in favor of 27. Therefore, by equilibrating the anti-diyne once, it is possible to convert 26 into 27 in $\mathbf{7 1 \%}$ yield.

The acetylenic hydrogens of $\mathbf{2 7}$ were now replaced by iodine ($\mathbf{2 7} \rightarrow \mathbf{2 8}$; NIS, $\mathrm{AgNO}_{3} ; 89 \%$], and the cyclic enediyne was then generated ${ }^{15}$ (Scheme 2, 28 $\boldsymbol{\rightarrow 2 9}$; 72\%) by Pd-mediated condensation with (Z)-1,2-bis(trimethylstannyl)ethene ${ }^{16}$ [Pd$\left.\left(\mathrm{PPh}_{3}\right)_{4}, 60{ }^{\circ} \mathrm{C}\right]$. From 29, the last steps were guided by established ${ }^{12, b, 17}$ principles. Reduction with DIBAL (98\%), desilylation (TBAF, 94\%), and further reduction (76\%) with NaBH_{4} gave triol 30. Silylation of the primary and secondary hydroxyls ($\mathrm{Et}_{3} \mathrm{SiOTf}, 2,6$-lutidine, 95\%) and selective hydrolysis (3:6:1 AcOH, THF, $\mathrm{H}_{2} \mathrm{O} ; 94 \%$) then afforded allylic alcohol 31, from which point elaboration of the trisulfide $(\mathbf{3 1} \rightarrow \mathbf{3 2})$ was accomplished ${ }^{1 a, 18}$ by successive reaction with diisopropyl azodicarboxylate, $\mathrm{Ph}_{3} \mathrm{P}$, and AcSH (94%) and DIBAL-H and N -(methyldithio)phthalimide (88% over two steps). Finally, acid
(11) cf.: (a) Imamoto, T.; Sugiura, Y.; Takiyama, N. Tetrahedron Lett. 1984, 25, 4233. (b) Suzuki, M.; Kimura, Y.; Terashima, S. Chem. Lett. 1984, 1543. (c) Jung, P. M. J.; Burger, A.; Biellmann, J.-F. Tetrahedron Lett. 1995, 36, 1031.
(12) Kunz, H.; Unverzagt, C. Angew. Chem., Int. Edn. Engl. 1984, 23, 436.
(13) The SiMe_{3} group is removed during hydrolysis. Compound 24 exists as two hydroxyl lactones, epimeric at $\mathrm{C}(9)$.
(14) $\mathrm{C} \equiv \mathrm{CH}$ units at $\mathrm{C}(5)$ and $\mathrm{C}(9)$ anti.
(15) cf.: Shair, M. D.; Yoon, T.; Danishefsky, S. J. J. Org. Chem. 1994, 59, 3755. Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P. J. Am. Chem. Soc. 1993, 115, 4419. Barrett, A. G. M.; Boys, M. L.; Boehm, T. L. J. Chem. Soc., Chem. Commun. 1994, 1881. Pattenden, G.; Thom, S. M. Synlett 1993, 215.
(16) Mitchell, T. N.; Amamria, A.; Killing, H.; Rutschow, D.; J. Organomet. Chem. 1986, 304, 257.
(17) Magnus, P.; Lewis, R. T.; Bennett, F. J. Chem. Soc., Chem. Commun. 1989, 916 and references therein.
(18) $\mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{SAc} \rightarrow \mathrm{CH}_{2} \mathrm{SH} \rightarrow \mathrm{CH}_{2} \mathrm{SSSMe}$.

Scheme 3^{a}

${ }^{a} \mathrm{Z}=\mathrm{SiMe}_{2} \mathrm{Bu}-t ; \mathrm{A}=\mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-p$.
hydrolysis ($\mathrm{TsOH}, \mathrm{H}_{2} \mathrm{O}, 84 \%$) served to disengage the two remaining protecting groups and so give synthetic (\pm)-calicheamicinone (1). ${ }^{\text {a, }, \mathrm{b}}$

We have also converted racemic 8 (represented in Scheme 3 by the enantiomer $8 \mathbf{~ a}$) into ketone $\mathbf{3 3}$ by procedures ${ }^{19,20}$ of the type used in the first route. Treatment of $\mathbf{3 3}$ with cerium trimethylsilylacetylide (1:1.4 $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CLi}, \mathrm{CeCl}_{3} ; \mathrm{THF},-78$ ${ }^{\circ} \mathrm{C} ; 91 \%$) serves to introduce the acetylene syn to the nitrogen $(\mathbf{3 3} \rightarrow \mathbf{3 4})$, and further elaboration ${ }^{20,21}$ took the route as far as aldehyde 35. This reacts with cerium trimethylsilylacetylide ($1: 1.3 \mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CLi}, \mathrm{CeCl}_{3}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$) to give alcohol 36 $(71 \%),{ }^{22}$ which is easily convertible ${ }^{20,23}$ into lactone 37 and then, by a procedure ${ }^{20,24}$ similar to that used earlier, into 27.

The only stereogenic center in $\mathbf{1 8}$ and 34 that is preserved after elaboration to (\pm)-calicheamicinone is $\mathrm{C}(5)$. Therefore, in a synthesis of material with the natural stereochemistry (as actually depicted in diagram 1), intermediates corresponding to 5 with ($2 S$) absolute configuration would have to be processed as in Scheme 1, while the reactions of Scheme 3 would be used for the $(2 R)$-isomer.

Acknowledgment. We thank NSERC, the Merck Frosst Therapeutic Research Centre, and the Alberta Cancer Board for financial support, Drs. G. V. J. da Silva, N. Selvakumar, and Y.-Z. Hu for assitance, Professor W. A. G. Graham for hexamethylditin, Professor D. N. Harpp for advice, and Dr. R. McDonald for x-ray measurements. Y.T. held an AHFMR Postdoctoral Fellowship, Y.-J.W. a NSERC Postdoctoral Fellowship, S.D. a 1967 NSERC Graduate Fellowship, and G.M. a Postdoctoral Scholarship (Ministère de la Recherche et de la Technologie, France).

Supporting Information Available: Spectral data for most compounds and annotated flow chart for the second route (42 pages). Ordering information is given on any current masthead page.

JA9602004

[^1]
[^0]: (1) (a) Haseltine, J. N.; Paz Cabal, M.; Mantlo, N. B.; Iwasawa, N.; Yamashita, D. S.; Coleman, R. S.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1991, 113, 3850. (b) Smith, A. L.; Pitsinos, E. N.; Hwang, C.-K.; Mizuno, Y.; Saimoto, H.; Scarlato, G. R.; Suzuki, T.; Nicolaou, K. C. J. Am. Chem. Soc. 1993, 115, 7612. (c) Aiyer, J.; Hitchcock, S. A.; Denhart, D. J.; Liu, K. K.-C.; Danishefsky, S. J.; Crothers, D. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 855.
 (2) Lee, M. D.; Dunne, T. S.; Chang, C. C.; Siegel, M. M.; Morton, G O.; Ellestad, G. A.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc. 1992, 114, 985.
 (3) Seebach, D.; Hungerbühler, E.; Naef, R.; Schnurrenberger, P.; Weidmann, B.; Züger, M. Synthesis 1982, 138.
 (4) Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082
 (5) cf:: (a) Broadhurst, M. D. J. Org. Chem. 1985, 50, 1117. (b) Eid, C. N., Jr.; Konopelski, J. P. Tetrahedron 1991, 47, 975.
 (6) Made from the amine (BuLi, THF, $0{ }^{\circ} \mathrm{C} ; 20 \mathrm{~min}$); Zhinkin, D. Y.; Mal'nova, G. N.; Gorislavskya, Zh. V. J. Gen. Chem. USSR 1968, 38, 2702.
 (7) cf.: Masamune, S.; Ellingboe, J. W.; Choy, W. J. Am. Chem. Soc. 1982, 104, 5526.
 (8) Danishefsky, S.; Prisbylla, M. P.; Hiner, S. J. Am. Chem. Soc. 1978, 100, 2918. cf.: Danishefsky, S. Acc. Chem. Res. 1981, 14, 400. Banville, J.; Brassard, P. J. Chem. Soc., Perkin Trans. 1 1976, 1852. Schechter, H.; Conrad, F.; Daulton, A. L.; Kaplan, R. B. J. Am. Chem. Soc. 1952, 74, 3052.
 (9) Structure confirmed by x-ray analysis.
 (10) Osby, J. O.; Ganem, B. Tetrahedron Lett. 1985, 26, 6413.

[^1]: (19) $\mathrm{OH} \rightarrow \mathrm{OCOBu}-t ; \mathrm{CH}=\mathrm{CH}_{2} \rightarrow \mathrm{CHO} \rightarrow \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{OCH}_{2}-$ $\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-p ; \mathrm{NO}_{2} \rightarrow \mathrm{NH}_{2} \rightarrow \mathrm{NHCO}_{2}$ allyl; $\mathrm{CHOSiMe} 2 \mathrm{Bu}-t \rightarrow \mathrm{CHOH} \rightarrow$ $\mathrm{C}=\mathrm{O}$. The $\mathrm{C}(5)$ epimer of $\mathbf{8 a}$ was also converted into $\mathbf{3 3}$.
 (20) See supporting information for details of these efficient procedures.
 (21) $\mathrm{OH} \rightarrow \mathrm{OSiMe}_{2} \mathrm{Bu}-t ; \mathrm{CH}_{2} \mathrm{OCOBu}-t \rightarrow \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CHO}$.
 (22) The $\mathrm{C}(9)$ epimer (18%) is convertible ($\mathrm{PCC} ; \mathrm{NaBH}_{4} ;$ ca. 90% overall) into an 11.6:1 isomer mixture in favor of 36.
 (23) $\mathrm{OH} \rightarrow \mathrm{OCOCH}_{2} \mathrm{Cl} ; \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-p \rightarrow \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CHO}$; $\mathrm{OCOCH}_{2} \mathrm{Cl} \rightarrow \mathrm{OH}$; Collins oxidation of lactols.
 (24) Desaturation at $\mathrm{C}(4)-\mathrm{C}(7)$, nitrogen deprotection, desaturation at $\mathrm{C}(2)-\mathrm{C}(3)$, nitrogen methoxycarbonylation, acetylene desilylation.

